The Use of Spline Interpolation in Semi-Lagrangian Transport Models
نویسندگان
چکیده
منابع مشابه
Tests on Semi-Lagrangian Transport and Interpolation
In air pollution models, semi-Lagrangian methods are often used to solve the ad-vective part of the corresponding model equation. Interpolation is an essential part of these methods. In this note, ve diierent interpolation methods will be discussed and results of numerical experiments will be presented. To keep the concentration eld nonnegative, ltering techniques are used. Also a monotone inte...
متن کاملTHE USE OF SEMI INHERITED LU FACTORIZATION OF MATRICES IN INTERPOLATION OF DATA
The polynomial interpolation in one dimensional space R is an important method to approximate the functions. The Lagrange and Newton methods are two well known types of interpolations. In this work, we describe the semi inherited interpolation for approximating the values of a function. In this case, the interpolation matrix has the semi inherited LU factorization.
متن کاملlearners’ attitudes toward the effectiveness of mobile-assisted language learning (mall) in vocabulary acquisition in the iranian efl context: the case of word lists, audiobooks and dictionary use
رشد انفجاری تکنولوژی فرصت های آموزشی مهیج و جدیدی را پیش روی فراگیران و آموزش دهندگان گذاشته است. امروزه معلمان برای اینکه در امر آموزش زبان بروز باشند باید روش هایی را اتخاذ نمایند که درآن ها از تکنولوژی جهت کمک در یادگیری زبان دوم و چندم استفاده شده باشد. با در نظر گرفتن تحولاتی که رشته ی آموزش زبان در حال رخ دادن است هم اکنون زمان مناسبی برای ارزشیابی نگرش های موجود نسبت به تکنولوژی های جدید...
15 صفحه اولPolyharmonic spline interpolation on a semi-space lattice
We consider the problem of semi-cardinal interpolation for polyharmonic splines. For absolutely summable data sequences, we construct a solution to this problem using a Lagrange series representation. The corresponding Lagrange functions are deened using Fourier transforms and the technique of Wiener-Hopf factorizations for semi-space lattices.
متن کاملA new approach to semi-cardinal spline interpolation
The problem of semi-cardinal spline interpolation was solved by Schoenberg exploiting the piecewise polynomial form of the splines. In the present paper, we propose a new construction for the Lagrange functions of semi-cardinal spline interpolation , based on a radial basis and Fourier transform approach. This approach suggests a way of extending semi-cardinal interpolation to polyharmonic spli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Monthly Weather Review
سال: 1998
ISSN: 0027-0644,1520-0493
DOI: 10.1175/1520-0493(1998)126<2008:tuosii>2.0.co;2